
ScafoldSketch: Accurate Industrial Design Drawing in VR

Xue Yu
George Mason University

Fairfax, USA
xyu21@gmu.edu

Akshay Sharma
Virginia Tech

Blacksburg, USA
Iowa State University

Ames, USA
akshays@iastate.edu

Stephen DiVerdi
Adobe Research

San Francisco, USA
diverdi@adobe.com

Yotam Gingold
George Mason University

Fairfax, USA
ygingold@gmu.edu

Input Scaffolds
(a)

Auto-Corrected Scaffolds
(b)

Input Shape Curves
(c)

Auto-Corrected Shape Curves
(d)

Figure 1: ScafoldSketch user inputs and system outputs. (a) The scafold strokes a user drew in VR. (b) The auto-corrected
scafold from the user’s strokes. (c) The shape strokes the user drew in VR. (d) The auto-corrected shape from the user’s strokes
and the scafold.

ABSTRACT
We present an approach to in-air design drawing based on the
two-stage approach common in 2D design drawing practice. The
primary challenge to 3D drawing in-air is the accuracy of users’
strokes. Beautifying or auto-correcting an arbitrary drawing in
2D or 3D is challenging due to ambiguities stemming from many
possible interpretations of a stroke. A similar challenge appears
when drawing freehand on paper in the real world. 2D design
drawing practice (as taught in industrial design school) addresses

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’21, October 10–14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8635-7/21/10. . . $15.00
https://doi.org/10.1145/3472749.3474756

this by decomposing the process of creating realistic 2D projections
of 3D shapes. Designers frst create scafold or construction lines.
When drawing shape or structure curves, designers are guided by
the scafolds. Our key insight is that accurate industrial design
drawing in 3D becomes tractable when decomposed into auto-
correcting scafold strokes, which have simple relationships with
one another, followed by auto-correcting shape strokes with respect
to the scafold strokes. We demonstrate our approach’s efectiveness
with an expert study involving industrial designers.

CCS CONCEPTS
• Human-centered computing → Virtual reality; Interactive
systems and tools; • Computing methodologies → Shape mod-
eling.

KEYWORDS
industrial design, virtual reality, sketching, auto-correct

https://doi.org/10.1145/3472749.3474756
mailto:permissions@acm.org
mailto:ygingold@gmu.edu
mailto:diverdi@adobe.com
mailto:akshays@iastate.edu
mailto:xyu21@gmu.edu

UIST ’21, October 10–14, 2021, Virtual Event, USA Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold

ACM Reference Format:
Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold. 2021. Scaf-
foldSketch: Accurate Industrial Design Drawing in VR. In The 34th Annual
ACM Symposium on User Interface Software and Technology (UIST ’21), Oc-
tober 10–14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3472749.3474756

1 INTRODUCTION
Industrial designers invest years learning and practicing a particu-
lar approach to drawing perspective views of 3D shapes [14, 20, 21,
26, 41, 44]. These design drawings are lossy projections of an often
de novo 3D form in their mind. Designers learn to draw scafolds to
help them create accurate and aesthetic projections of 3D shapes
(Figure 2). A set of construction lines serves as a scafold for the de-
scriptive lines that depict the intended shape. Scafolds are straight
lines that can be easily drawn accurately. Scafolds help designers
draw aesthetic shape strokes by providing designers with accurate
visual references. Shape strokes pass through key points such as
intersections between scafold lines. Without scafolds, creating
globally consistent and accurate design drawings would be much
more difcult.

While 2D projections can communicate approximate ideas quickly,
3D shapes are needed when communicating with stakeholders such
as structural or fabrication engineers, to measure or manipulate
the shape, or anytime additional viewpoints are needed. To cre-
ate 3D shapes, designers learn an entirely new skillset unrelated
to sketching: polygonal modeling in CAD software. This discards
the knowledge and experience industrial designers spend years
mastering.

We introduce ScafoldSketch, an approach that allows users to
create accurate sketches in 3D (using a VR headset and controllers)
by leveraging a particular technique from 2D industrial design
drawing (Figure 1), efectively granting industrial designers new
powers they already know how to use. The challenge with existing
approaches to 3D sketching is the difculty humans have accurately
drawing in space. Accuracy is signifcantly reduced compared to
2D sketching [3, 7, 48, 50]. This may be due to depth perception or
the additional complexity in the body’s motor plan, which must
consider the extra free dimension not constrained by contact with
a drawing surface. For example, it is easy to draw two intersecting
straight lines in 2D but exceptionally difcult in 3D. Previous 3D
sketching approaches either target “artistic” drawing with rough
and disconnected strokes (Quill, TiltBrush, Gravity Sketch, [28, 32,
43]) or focus on new tools and algorithms for beautifying, neatening,
or auto-correcting strokes [2, 6, 11, 12, 17, 18, 25, 27, 31, 53]. To use
these approaches, designers must learn new ways to draw or accept
globally inconsistent 3D sketches. Design drawings (in 2D or 3D) are
too complex for general approaches to algorithmic beautifcation
or auto-correction (hereafter auto-correction) [23, 35, 37], which
must determine which strokes are intentionally straight or curved;
parallel, perpendicular, or otherwise; the same length; and intersect
tangentially or otherwise.

The key insight underpinning ScafoldSketch is that scafolds
and shape strokes decompose design drawing into simpler prob-
lems, each amenable to algorithmic global auto-correct. Designers
learn this decomposition as one of many techniques from indus-
trial design education. This decomposition was used for 2D-to-3D

inference by Schmidt et al. [44]. We employ this decomposition
for direct 3D drawing, where accuracy is the dominant challenge.
When considering an entire 3D drawing at once, the scafold lines
and shape strokes together are too complex for global algorithmic
auto-correct. Separately, each stage leads to a highly constrained,
solvable algorithmic auto-correct problem. Real-time algorithmic
global auto-correct is tractable for 3D scafold lines, since they
are straight lines with a small set of known inter-relationships.
Given auto-corrected scafold lines, algorithmic auto-correct of
shape strokes becomes tractable, since each shape stroke must pass
through key points of the scafold. Accurate scafold lines also
provide visual reference when designers draw 3D shape strokes,
preventing compound errors. An example of the user input scafold
lines and shape curves, and the output auto-corrected strokes, can
be seen in Figure 1, which makes it clear that ScafoldSketch enables
users to create accurate and expressive 3D drawings in VR with a
particular design drawing style that can be part of many diferent
artistic and professional workfows.

2 RELATED WORK
We consider previous work in the areas of direct 3D drawing and
2D-to-3D drawing.

Direct 3D Drawing. A variety of approaches have been proposed
for drawing in 3D. Quill and TiltBrush are recent VR drawing
systems for artistic 3D drawing. They do not perform auto-correct,
and so output a set of disconnected, rough strokes. In contrast,
our goal is to generate accurate curves in 3D for industrial design
applications. Gravity Sketch is also a recent VR shape creation
system targeting industrial design. Users can create freeform 3D
strokes which are not algorithmically beautifed or manipulate
traditional CAD primitives, such as Bézier control point positions
in space. There is no algorithmic auto-correct beyond snapping to a
grid or snapping control points to each other. In contrast, we create
accurate 3D curves by auto-correcting a 3D analog of 2D design
drawing practice.

Schkolne et al. [43] introduced an early approach to in-air 3D
shape creation with custom hardware that digitized a user’s hand
pose or tool. The novelty of this system was the input hardware.
They did not aim to correct inaccurate user input. Keefe et al. [25]
proposed several interactions for drawing smoother or more con-
trollable individual strokes. These interactions do not consider
global information, such as intersections and tangencies between
strokes. In contrast, we auto-correct each drawn stroke with global
information from all previously-drawn strokes.

Kim et al. [27, 28] proposed techniques for creating freeform
3D scafolds based on designers’ hands. In contrast, our approach
does not support freeform scafolds. Instead, we target existing
2D design drawing practices with the goal of creating accurate 3D
drawings.

Multiplanes [31] and CASSIE [53] snap curve endpoints to ex-
isting planes, curves, or grid points based on spatial proximity.
Multiplanes displays context-sensitive guides (e.g., planes). This
snapping has the efect of neatening the drawn curves, but it is
limited to the particular supported snapping relationships. CASSIE
[53] creates well-connected 3D curve networks as we do. Drawn
curves are neatened via an optimization process that considers

https://doi.org/10.1145/3472749.3474756

ScafoldSketch: Accurate Industrial Design Drawing in VR UIST ’21, October 10–14, 2021, Virtual Event, USA

planarity and snapping endpoints and tangents to other curves or a
regular grid. CASSIE further automatically detects surface patches
and lets users draw on them. We do not explore surfacing in Scaf-
foldSketch. In contrast, we explore accurate 3D curve drawing via
a user-created scafolding structure. This results in curves that
respect global relationships such as lengths and angles, allowing
users to create, for example, symmetric shapes. Smart3DGuides
[32] aimed to improve accuracy purely by displaying appropriate vi-
sual guides, without directly snapping or otherwise auto-correcting
user input. In our approach, designers explicitly create their own
scafold “guides” in a familiar and accurate manner based on their
2D drawing experience, by drawing lines and placing tick marks.
Because users create their own scafolds, ScafoldSketch is able to
infer user intent more accurately. Arora et al. [2] and Drey et al.
[12] allow users to specify how their tablet’s 2D surface maps to a
3D surface. Users then draw more precise 2D strokes on the tablet
surface. The strokes are projected into 3D with the specifed map.
In contrast, ScafoldSketch users draw directly in 3D and rely on
auto-correct to create accurate 3D strokes. This eliminates many
mode switches.

2D-to-3D Drawing. Many approaches considered the problem of
lifting 2D sketched strokes into 3D. While these approaches do not
require VR or 3D tracking equipment, 2D-to-3D lifting approaches
must contend with the ambiguous nature of 2D projections of 3D
forms. They require designers to learn new drawing approaches
[5, 13, 24, 44], accommodate simplifying assumptions and limita-
tions [1, 19, 52], or spend time annotating existing drawings [16, 49].
The most closely related works to ours are by Schmidt et al. [44]
and Gryaditskaya et al. [19], which lift industrial design drawings
from 2D to 3D interactively or as a post-process, respectively. They
both distinguish between straight scafold lines and smooth shape
curves, with a primary focus on interpreting depth ambiguities such
as accidental 2D intersections and perspective projections. Grya-
ditskaya et al. [19] aims to lift each individual stroke, no matter
how roughly drawn, whereas Schmidt et al. [44] performs algorith-
mic auto-correct as we do. Our interface allows designers to draw
directly in 3D. This avoids projection ambiguities but presents a
diferent set of algorithmic auto-correct challenges. To auto-correct
scafold lines, we must solve a problem common to many beau-
tifcation systems, fnding a non-conficting subset of satisfable
constraints. Our iteratively re-weighted least squares (IRLS) ap-
proach to constraint satisfaction provides a simple, unifed solution
to what is often solved via a complex decision tree [15].

3 INTERFACE
The design of the ScafoldSketch interface is informed by established
conventions of sketching for industrial design.

3.1 Industrial Design Practice
Industrial designers conventionally learn a particular approach
to drawing 3D shapes in perspective [14, 20, 21, 26, 41] among
other skills. This approach is based on drawing straight lines, often
called construction or scafold lines, which make up a scafold for
later curves depicting the shape of the 3D form (Figure 2). The
approach is typically drawn free-hand. Construction lines include
lines for establishing vanishing points for accurate perspective

project. Construction lines also include scafold lines (following the
taxonomy in Gryaditskaya et al. [20]). Like the scafolds used in the
physical construction of a building, scafold lines typically form a
set of interrelated lines which enclose or otherwise support drawing
the lines and curves which depict the shape itself. Scafold lines are
often parallel, perpendicular, intersecting, and co-planar. Scafold
lines may share the same length, such as the opposite edges of a
box. Other approaches to form creation, which may be preferred by
some industrial designers, are out of scope for ScafoldSketch. We
based our interface for accurate drawing in VR on this technique.
This makes our interface immediately approachable by industrial
designers who have learned to explore form development through
design drawing. The 3D sketches ScafoldSketch creates could be
seen as a fnal result (if the designer’s goal is an initial form or
sketch) or as a step towards a rendering. ScafoldSketch creates
similar output to other industrial-design-inspired 3D modeling
approaches [44, 52, 53].

3.2 The ScafoldSketch Interface
Our VR sketching environment ScafoldSketch is designed to trans-
late the existing 2D design drawing process into 3D. Therefore, we
have exactly two modes corresponding to the two types of lines,
scaffold and shape. We use diferent auto-correct algorithms in
the diferent modes. Since we are mimicking a traditionally pen-
and-paper drawing process, our interface is minimalistic (Figure 2).
The VR environment is white like paper with light grid lines visible
on the walls. Our approach to auto-correct makes no assumptions
regarding world-space axes.

In scaffold mode, the VR controller creates an elastic line
stretched between the controller trigger’s press and release (Fig-
ure 3a). After a scafold line is drawn, it is auto-corrected to more
accurately align with other scafold lines (Figure 3b). Scafold lines
are thin and gray, since they are drawn as light strokes in pen-and-
paper. By default, tick marks are shown at the start, end, and middle
of a scafold line, which we call “keypoints.” Shape strokes begin,
end, and pass through these keypoints. Users can add additional
keypoints by drawing an extremely short scafold line across an
existing scafold line. Designers often add keypoints when drawing,
for example, a rounded corner.

Shape strokes describe the intended form. We draw them as thick,
black lines, since they are drawn as dark strokes in pen and paper.
In shape mode, the VR controller creates a curve directly from
the controller movements between the trigger’s press and release
(Figure 3c). After a shape stroke is drawn, it is auto-corrected to
be smooth while passing through and tangent to the scafold lines
(Figure 3d).

Besides the two drawing modes, our interface has buttons for
undo/redo and zooming in/out. Zooming is important for user
accuracy. A user’s accuracy in the physical world is limited by their
physical abilities. By shrinking themselves, a user improves their
accuracy in the virtual world. Since our auto-correct thresholds
are based on physical measurements in user coordinates, zooming
is necessary to, for example, prevent undesirable snapping. Our
system auto-saves, though a feature exists to export the entire
drawing history. Text labels annotate controller buttons whenever
the user brings the controller close to their face.

UIST ’21, October 10–14, 2021, Virtual Event, USA Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold
Pe

n
an

d
Pa

pe
r

Sc
af

fo
ld

Sk
et

ch

Figure 2: Top row: Frames from a time lapse pen-and-paper industrial design drawing (“Product Design Sketching with
construction lines” © Chris Wilson). Designers frst construct scafolding and then draw the shape curves on top. Bottom row:
The same two-stage design drawing process executed in 3D with ScafoldSketch. The raw input and auto-corrected output for
this example can be see in Figure 3.

Sc
af

fo
ld

s

(a) (b)

(c) (d)

User Input Auto-Corrected

Sh
ap

e
St

ro
ke

s

Figure 3: A user’s raw input and auto-corrected output in
ScafoldSketch. (a) The raw input scafold strokes. (b) The
auto-corrected scafolding. (c) The raw input shape strokes.
(d) The auto-corrected result.

4 ALGORITHM
As scafold and shape curves have diferent afordances, we use
diferent algorithms for auto-correcting them.

4.1 Auto-Correcting Scafolds
Scafolds are composed of straight lines with a limited set of inter-
relationships [20, 21]. The lines may intersect, they may be parallel,
perpendicular, or coplanar, and they may have the same length.
The challenge is in disentangling which of the many possible re-
lationships are relevant to a newly drawn line (Figure 4). Previ-
ous approaches to auto-correcting lines and circles have relied on
snapping, heuristic prioritization, or least squares formulations
[22, 23, 35, 38, 52]. Snapping and heuristic prioritization are greedy
approaches. They will exactly satisfy some constraints in the order
considered, but fail in the presence of cycles or compatible con-
straints afecting the same vertex. This is common in our scenario,
since scafolds support closed shapes. Traditional least squares solu-
tions, on the other hand, can satisfy constraints even in the presence
of cycles, but compromise in the presence of conficting constraints,
satisfying none. Since scafold lines are dense, cycles and confict-
ing constraints are common. We use iteratively re-weighted least
squares (IRLS) to converge on a set of mutually satisfable con-
straints, discarding conficts.

For an input scafold line � , we formulate each candidate con-
straint as a function � (�) that measures the squared deviation from
constraint satisfaction. A line � is defned by start and end 3D points
�� and �� which we call “keypoints” for constraint consideration.
We also include the line midpoint �� as a keypoint. User-drawn tick
marks (very short strokes crossing a line, indicating intermediate
positions) are additional keypoints. The constraints we consider
are defned for the line � relative to another scafold line � , keypoint
� , or direction vector � .

Point-point. To construct a closed scafold polygon, end points of
adjacent scafold strokes must meet. We measure constraint satis-
faction with the point-to-point Euclidean distance (Fig. 4), squared.
We include this constraint for each endpoint paired with all other
existing scafold keypoints if the constraint function on the input

https://www.youtube.com/watch?v=_uzSMAI5AuE
https://www.youtube.com/watch?v=_uzSMAI5AuE

ScafoldSketch: Accurate Industrial Design Drawing in VR UIST ’21, October 10–14, 2021, Virtual Event, USA

line evaluates to less than (5cm)2 in physical space.

� (�� , �) = ∥�� − � ∥2 (1)

Point-line. A line may abut another line but not at one of its ends.
For this constraint, we compute the point-to-line distance (Fig. 4).
This constraint is added for each endpoint of the input line if the
point-line distance with each scafold line initially evaluates to less
than (5cm)2.

∥(�� − ��) × (�� − ��)∥2
� (�� , �) = (2)

∥�� − �� ∥2

Perpendicular lines. Two lines may be perpendicular, particularly
if the lines share an endpoint or otherwise abut (Fig. 4), which is
measured by the inner product of the line and a scafold direction
� . The constraint energy is zero when it is satisfed. The threshold
for inclusion is equivalent to 10◦.

� (�, �) = ((�� − ��) · �)2 (3)

Parallel direction. A line may also be parallel to an existing scaf-
fold line, or to the vertical axis (Fig. 4), which is measured as one
minus the inner product of the line and a direction. The constraint
energy is also zero when it is satisfed. The threshold for inclusion
is equivalent to 10◦.

� (�, �) = (1 − | (�� − ��) · � |)2 (4)

Equal length. Construction of many polyhedra requires edges
of equal length (Fig. 4), so we compute the ratio of the new line’s
length to existing scafold lines. The threshold for inclusion is 25%. � �2∥�� − �� ∥

� (�, �) = − 1 (5)∥�� − �� ∥
For a new input scafold line, we compute the value of all pos-

sible constraints that may be applied with respect to all existing
keypoints, directions, and lines. For each possible constraint, if its
value is below a threshold, we include it in our list of constraints.
Naively adding all constraint terms together with equal weights
�� = 1 leads to a least squares formulation:∑

min ���� (�) (6)
�

Problematic solutions occur with any fxed choice of weights, since
optimization will converge to a non-zero balance among conficting
constraints (e.g. two distinct point-point constraints for a single
endpoint). This is unsatisfying for the user, as a compromise among
constraints is perceived as no constraint being satisfed. In contrast,
our IRLS formulation repeatedly re-solves the problem with weights
updated after each iteration:

1
�� = (7)

� + �� (�)
This induces a positive feedback loop in which more satisfable
constraints are given larger and larger weights, ultimately assigning
binary weights approaching either ∞ (satisfed) or 0 (discarded) for
each constraint. We favor point-point constraints by setting their
initial weight to �� = 100, and all other initial weights to 1. In our
experiments, we have found that this IRLS auto-correct approach
converges after 2–6 iterations and is capable of exactly satisfying
constraints and intelligently resolving conficts. In a complex scene
(∼45 scafold lines), this takes 0.2 seconds for a scafold line with few

constraints and 1.1 seconds for a scafold line with many constraints.
The end result of this auto-correct is accurate scafolds with no
global distortion, suitable for shape stroke auto-correct (Figures 1,
2, 3, 6, 7, and 10).

4.2 Auto-Correcting Shape Strokes
The shape strokes that defne a 3D form appear complex and non-
planar yet smooth and fair. In the absence of scafold lines, they
are challenging to draw accurately, even in 2D. In ScafoldSketch,
designers frst draw the scafolds they are accustomed to creating
directly in 3D. Then designers draw 3D shape strokes and we auto-
correct each curve using the scafolds as constraints. Our shape
strokes have two goals: to respect the scafold constraints, and to be
as beautiful as possible. To satisfy the frst goal, we use the user’s
input 3D curve to select scafold keypoints and tangents for the
curve construction, ensuring that the auto-corrected curve respects
the user’s intended shape. There are many possible curves that
satisfy these constraints. To satisfy our second goal, we perform an
optimization on the remaining curve degrees of freedom to achieve
a beautiful 3D shape. We use minimum variation of curvature (MVC)
curves [34], whose solution space includes French Curves (Euler
spirals or clothoids) used in design [9, 33, 40, 47] (but may not
be identical depending on boundary conditions [30]). The results
are aesthetically pleasing curves that accurately match the user’s
intended design. Example input and auto-corrected shape strokes
can be seen in Figure 5.

4.2.1 Selecting scafold constraints. From the user input shape
stroke, we select a sequence of keypoints and tangent directions
to form the basis of our 3D curve. We model our 3D curves as
piecewise cubic Bézier splines. We sample the input stroke uni-
formly in arclength (1 cm) as � = {�1, �2, . . . �� }. For each �� we
fnd the nearest scafold keypoint within a distance threshold (3
cm defned in the user’s physical coordinates, so zooming can be
used to adjust the results), yielding a sequence � = {�1, �2, . . . �� }.
It is likely that the same keypoint will be selected multiple times by
consecutive shape points that are all within the distance threshold,
so we remove repeated elements from � .

If the input shape curve is nearly tangent to a scafold at a key-
point, we constrain the curve to have that tangent direction at that
keypoint. The input curve’s tangent is computed with forward fnite

��+1 −�� diferencing, � = . We compute the smallest angle between ∥��+1 −�� ∥
the input curve tangent and any scafold line passing through the
keypoint. If the angle is less than a threshold of 25◦, we constrain
the curve to have the scafold line’s tangent. If the input curve is
not nearly tangent (less than 25◦) to a scafold line, then the local
average direction of the input curve is used instead. The result is
a sequence � = {�1, �2, . . . �� } of tangent directions, one for each
keypoint in � .

The points � and directions � defne our piecewise Bézier spline.
Each pair of adjacent �� , ��+1 are the endpoints of a Bézier segment,
and �� , −��+1 are the tangent directions. For each Bézier segment,
there are two remaining degrees of freedom: the magnitudes ��,1
and ��,2 of the tangent control points, defned as �� +��,1�� and ��+1 −
��,2��+1. This is the basis of our minimum variation of curvature
optimization.

UIST ’21, October 10–14, 2021, Virtual Event, USA Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold

l

p
point-point

l

k
point-line

l

d
perpendicular

θ
l

d
parallel

θ
l

k
equal length

Figure 4: A newly drawn scafold line � is shown in blue and a pre-existing scafold line is shown in black. The point-point
constraint measures the distance from an endpoint of � to a keypoint �. The point-line constraint measures the distance from
an endpoint of � to a previous scafold line � . The perpendicular constraint measures the angle deviation from 90◦ between �
and a previous scafold line direction � . The parallel constraint measures the angle deviation between � and a previous scafold
line direction � . The equal length constraint measures the ratio between the length of � and a previous scafold line � .

In
pu

t
A

ut
o-

C

or
re

ct
ed

Figure 5: Top row: Input shape strokes. Bottom row: Auto-corrected output. All examples use the same square scafold. All
examples except for the rounded square are a single shape stroke. The auto-corrected results exhibit diferent position and
tangent constraints and the curves achievable by MVC optimization.

4.2.2 Shape curve optimization. Piecewise Bézier curves with min-
imum variation of curvature (MVC) will form circular arcs when
the endpoints and tangent directions allow and approximate French
curves (clothoids or Euler spirals) when not [30]. MVC was intro-
duced as a technique for creating aesthetically pleasing curves and
surfaces that interpolate user constraints in industrial design appli-
cations [34]. The shape curves in industrial design sketches rarely
subtend arcs of greater than 90 degrees in between keypoints, so
Bézier segments are sufciently expressive and efcient to optimize
due to their small number of degrees-of-freedom.

We compute the variation of curvature as the sum of the Menger
curvature [51] at sample points along the curve. From our piecewise
Bézier defned by � and � , we uniformly sample in arclength points
along it as � = {�1, �2, . . . �� }, ensuring each Bézier segment has at
least one sample. The curvature is computed as

1 4��
� (��) = = (8)

�� ∥��−1 − �� ∥ ∥�� − ��+1 ∥ ∥��+1 − ��−1 ∥
where �� is the radius of the circle subtended by ��−1, �� , ��+1 and
�� is the area of the triangle ��−1, �� , ��+1. The objective of our
optimization is the total curvature variation:∑

2(�� − ��+1) (9)

The degrees of freedom of our optimization are � =
{(�1,1, �1,2), (�2,1, �2,2), . . . (��−1,1, ��−1,2)}, the magnitudes of the
tangents of each Bézier segment. There are 2� − 2 unknowns. �
is initialized with values that ensure no cusps exist: ��,1 = ��,2 =

1
3 ∥�� − ��+1 ∥. We minimize Equation 9 using SciPy’s BFGS imple-
mentation. This takes around 50 milliseconds for simple curves
like a circle and approximately 1 second for very complex curves
involving 9–10 keypoints.

Users sometimes wish to draw perfectly straight shape strokes
between two keypoints not aligned with any scafold tangents.
In these cases, our optimization may produce a curve with some
undesirable curvature because the detected start and end tangents
may not be co-linear. We detect approximately straight input and
directly output a perfectly straight line between the frst and last
keypoint. We use principal component analysis (PCA) to fnd the
best-ftting straight line to the input point samples. We take the
segment of the PCA line that bounds the projection of all input point
samples. We use the PCA line if the maximum distance between
the input points and the PCA line is less than 8% of the PCA line
length and if the PCA line length is within 10% of the arc length of
the input curve.

5 EVALUATION
To evaluate our approach, we implemented a usable ScafoldSketch
application for the Oculus Quest. The interface is built on THREE.js
and WebXR, while the auto-correct engine is a Python service con-
nected to the interface via a WebSocket. Our system is deployable
to users’ home VR setups, making it easy for industrial designers
to experiment with 3D sketching. Figure 6 shows a professional

https://THREE.js

ScafoldSketch: Accurate Industrial Design Drawing in VR UIST ’21, October 10–14, 2021, Virtual Event, USA

Figure 6: A user in headset using ScafoldSketch to create
a cofee mug with spoon. ScafoldSketch does not impose
global axis alignment. The spoon scafold and mug scafolds
are aligned to diferent axes.

industrial designer using ScafoldSketch to draw a cofee mug and
spoon.

We tested ScafoldSketch to produce a variety of diferent types
of abstract and product designs with diferent shapes including
straight lines and right angles, circular arcs, and planar and non-
planar clothoid curves. Some exemplary results can be seen in
Figure 7. Compared to recent previous works, ScafoldSketch is
able to demonstrate both accurate and well-aligned 3D shapes
including parallel and perpendicular lines of equal length, while
also supporting more organic and curved shapes characteristic of
freeform 3D painting.

We also conducted a user study to evaluate the usability of Scaf-
foldSketch.

5.1 Methodology
Due to COVID-19, we performed a remote user study and relied
on fnding industrial designers who had their own VR headsets
(or access to one). We recruited six participants, P1–P6, (ages 20–
22, three women, three men) all students of university industrial
design programs. Three participants rated themselves as using VR
less than one hour per week, two said 1-3 hours per week, and
one more than 3 hours per week. Two participants had less than
one year experience with product design sketching, while four had
1–5 years experience. All participants had normal or corrected-to-
normal stereo vision. Remuneration was a $50 gift card. The study
took approximately 1.5 hours to complete.

Because we conducted our study remotely, we relied on the hard-
ware and environment of participants’ homes. Four participants
used an Oculus Quest, P2 used an Oculus Quest 2, and P6 used an
Oculus Rift. All participants used Windows computers. To conduct
the study, participants joined a video call with the practitioner and
cast their VR headset to the Google Chrome browser on the com-
puter, which was shared via the video call. Because of technical
difculties with the video call, P6 was unable to complete the study.
Their results are omitted from the remainder of this discussion.

Each participant used ScafoldSketch in two conditions, with and
without auto-correct. Previous work has established that free-hand
3D drawing in VR is low accuracy [3, 53]. Yet industrial designers are
able to create highly accurate free-hand 2D drawings using scafold
lines without auto-correct. Our without auto-correct condition tests

if scafold lines themselves are enough to improve VR drawing.
Our with auto-correct condition allows us to see how much of an
improvement auto-correct can provide. Conditions were balanced:
half of the participants started with auto-correct, and half started
without auto-correct.

Our protocol was approved by an institutional review board.
Participants all provided verbal informed consent at the start of
the study. In advance of the study, users were given instructions
describing ScafoldSketch and how to prepare their computers. We
started the study by reviewing a two minute video tutorial showing
the creation of a cylinder with rounded rectangular faces, and
then asked the user to reproduce the tutorial object (Figure 8) to
familiarize themselves with the system (max ten minutes). The user
then performed a directed task given a prompt. We showed the
user an industrial design sketch of a trash can outside the headset
(Figure 9). The user was asked to draw a trash can in 3D inspired by
the prompt using ScafoldSketch for ten minutes. (The user was not
asked to reproduce the exact prompt, and the prompt was not visible
during the task.) The user was then asked to create a drawing of
their own for another ten minutes. After the open-ended task, users
flled out a questionnaire. Then we repeated these tasks (tutorial,
directed, open-ended, questionnaire) for the second condition (with
or without auto-correct). Finally, participants flled out a post-study
questionnaire. Participants were given breaks between tasks. We did
not strictly enforce the ten minute time limit if the user requested
to spend more time on the task.

5.2 Results
The 3D drawings of participants P1–P5 for the directed and open
tasks, with and without auto-correct, can be seen in Figure 10.
Users chose a range of objects for the open-ended task, including
a shoe, a chair, and a microwave. They also made some creative
interpretations of the trash can for the directed task. (The prompt
was not visible during the task.)

The data from our questionnaires are presented in Figures 11 and
12. Eight of the questions, Q1–Q8, were repeated for each condition.
They are presented together for comparison in Figure 11. We mea-
sured statistical signifcance with a two-sample non-parametric
permutation test [39]. Uncorrected �-values are reported in the
fgure. Four questions, Q9–Q12, were specifcally about the auto-
correct condition and so do not have paired comparisons. They
are presented in Figure 12. Their �-values were computed with a
one-sample non-parametric permutation test against the theoret-
ical median response of ‘neutral’. A post-hoc Holm-Sidak analy-
sis [45] across all questions found none of the individual compar-
isons present sufcient evidence to reject the null hypothesis at
the � < .05 threshold. Aggregating responses across all questions
reveals a strong efect in favor of auto-correct using the same tests
(� = 0.0121 for Q1–Q8; � = 0.0001 for Q9–Q12).

6 DISCUSSION
Despite some individually promising results, our study is not pow-
erful enough to fnd evidence of a signifcant efect in our individual
questions. We believe this is due to the small number of participants,
owing to the difculty of recruiting users with the necessary in-
dustrial design skill and access to VR hardware during a pandemic.

UIST ’21, October 10–14, 2021, Virtual Event, USA Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold

Figure 7: Results created by expert users in our system, rendered with Polyscope [46]. Drawn objects include a kitchen range, a
lamp, an abstract sculpture, a fange, a bowl, a hair dryer, and a complex structure. Scafold lines are thin pale yellow and shape
strokes are thick blue.

Figure 8: A study participant’s tutorial drawing.

Figure 9: The prompt for the directed task (from Gryadit-
skaya et al. [19]).

Nevertheless, we fnd the questionnaire results encouraging and
the output drawings display consistent visible diferences. Figures 7
and 10 clearly show that auto-correct has a dramatic efect on the
achieved quality of the 3D designs. Participants answered unani-
mously that they strongly agree that “the scafolds helped [them]

draw more accurately” with auto-correct (Q5). Sentiment was unan-
imously positive-to-neutral for all questions in the auto-correct
condition. Further evidence appears in participants’ comments.

Participants unanimously agreed that ScafoldSketch is easy to
learn to use (Q1). P1 commented, “The software was very intuitive.
The UI was very easy to understand, and it wasn’t confusing to
understand how to use the software.” P5, who did not have previous
VR experience, remarked, “The 3D drawing tool was easy to use.”
This seems consistent with the consensus that VR drawing tools
such as Quill and TiltBrush are easy to learn in a similar way to
traditional media drawing. The two stage approach of drawing
scafolds and shape curves separately is an additional complexity
of ScafoldSketch, but the participants’ industrial design experience
likely made it easier for them to learn.

Participants drew comparisons to a prominent commercial com-
petitor, Gravity Sketch, in their comments. While P6 did not com-
plete the study, they did provide comments, including, “The pro-
gram is great, far more accurate than Gravity Sketch, feels similar
to using a pencil with a ruler and a sharpie, because of that there it
feels a lot more accurate than other sketch programs in VR,” and
P2 said, “Scafolding would help a ton in programs such as Gravity
Sketch.”

The most closely related recent work to ours is the recent CASSIE
system [53]. Their results embody a free fowing and organic ex-
pressive style, but have few straight lines or planar curves or other
geometric constraints. In contrast, our results include both sweep-
ing non-planar curves as well as straight and rounded lines that
satisfy precise relationships.

While participants unanimously agreed that “auto-correct helped
[them] draw more accurately” (Q9), there was less general agree-
ment that auto-correct correctly interpreted participants’ intended
scafold and shape strokes (Q10 and Q11). We measured the number

ScafoldSketch: Accurate Industrial Design Drawing in VR UIST ’21, October 10–14, 2021, Virtual Event, USA

P1

Auto-Correct

P2

Directed Task Open Task
Without With Without With

P3

P4

P5

Figure 10: The results of our user study, from all participants (P1–P5), both tasks (directed and open-ended), and both conditions
(without and with auto-correct). Scafold lines are thin pale yellow and shape strokes are thick blue. The prompt for the directed
task can be seen in Figure 9.

UIST ’21, October 10–14, 2021, Virtual Event, USA Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold

of times participants used the undo feature during a given session
and found that the median number of undos per session in the
without auto-correct condition was 16 versus 29 in the with auto-
correct condition. While we tuned the auto-correct thresholds to
our own preferences, we observed participants sometimes strug-
gling with them. This suggests that calibration or personalization
of thresholds per-user may improve auto-correct performance, and
that more sustained use may help users become accustomed to the
thresholds. Participants sometimes struggled with the zoom func-
tionality, which could have provided a solution to some of these
problems.

Two users were neutral regarding whether their auto-correct
drawings more accurately refected their intent than without auto-
correct (Q12). P3 elaborated that, “when just used for sketching and
ideating, without auto correct does prove to be a valuable ideation
tool with the ability to visualize your idea in space quickly,” and P5
said “I didn’t like it that the drawings would be limiting to make
when I wanted to create details, so in that aspect I really liked using
the drawing tools because there was no limit.” It is a limitation
of ScafoldSketch that we do not currently support turning auto-
correct on and of during a drawing session. In 2D design drawing,
once the overall form of a shape is defned, designers often add
fnishing touches such as shading or coloring regions or drawing
fne details on or near the implied surface. The user requests support
the fndings of CASSIE [53] that even when using armatures, users
still chose to add some freehand strokes for details or looser, more
organic objects.

Overall, we are heartened to fnd that all users agreed they en-
joyed using ScafoldSketch (Q6) and want to use it in the future
for their industrial design needs (Q7). Comments refect this sen-
timent: P1 said, “I defnitely plan on using this program once it
becomes available,” and P2, “Great stuf, would love to see this come
to market in the future for me to utilize!”

6.1 Refections
Our primary goal in designing ScafoldSketch was to create accu-
rate 3D strokes, a well-known challenge when drawing in 3D, by
borrowing from conventional industrial design practices. Our user
study baseline was not a comparison to raw input. Rather, it was
a comparison to scafolds and shape strokes without auto-correct.
2D designers do not have auto-correct but are able to make high-
quality drawings with scafolds. Our hypothesis was that scafolds
alone would be sufcient to improve VR drawing over the raw input
“true” baseline. We found that wasn’t the case. We believe this is be-
cause the visual reference provided by scafold lines is insufcient
to overcome the depth ambiguity and more complex physical mo-
tor program. We didn’t include a comparison to strictly raw input,
since previous work has established that raw input is problemati-
cally imprecise [3, 7, 48, 50]. We determined that a comparison to
Gravity Sketch or CASSIE [53], for example, would distract from
the central question we wanted to answer, because those tools have
diferent afordances and produce output that difers from ours in
important ways. Users may choose to use all three tools for comple-
mentary reasons. Our smoothing algorithm was designed around
our specifc set of constraints. Any curve smoothing algorithm that

respects our constraints would probably also generate aesthetically
pleasing curves and could be used instead.

When and how much algorithmic auto-correct or beautifcation
to apply is a classic problem. This often boils down to a question of
thresholds and user-facing controls to enable/disable or select the
degree of desired auto-correction. Overly aggressive auto-correct
undesirably modifes user input. Overly conservative auto-correct
disappoints users by failing to improve their input.

Our thresholds were determined empirically. They often work
well, but we believe threshold personalization is an interesting
avenue for future work. We implemented zoom functionality to
allow for more precise drawing than our thresholds allow. We
believe our users generally overlooked this functionality.

Auto-correct can impede creativity. We believe this to be true for
all systems in which errors of interpretation [4] may occur. In our
“without auto-correct” study scenario, users sometimes drew details
that could not have been drawn easily in the “with auto-correct”
scenario. They would have required tedious scafold creation, since
our shape curves must be attached to scafolds. They cannot have
details far from scafold key points. We could address such curves
in the future with new relationships, freeform or detail curve tools,
or simply allowing users to toggle auto-correct.

In 2D, high quality design drawings can be created without
auto-correct by drawing scafolds. Very quick sketches or very
experienced sketchers may use few scafolds. In 3D, for the clean
line drawing style of our results, we think auto-correct is necessary
since it is so much harder to draw accurate smooth curves. Scafolds
allow us to divide-and-conquer the auto-correct problem.

ScafoldSketch is designed to enable drawing accurate 3D curves
in VR. We use design drawing to achieve that goal. The 3D drawings
that can be created are more informative than their 2D analog, since
they can be rotated. ScafoldSketch can be used in industrial design
processes. However, ScafoldSketch does not support tools that
would be needed for more sophisticated 2D drawings or renderings
often created in industrial design pipelines, such as shading or
details. ScafoldSketch also does not visualize inferred constraints
or allow users to directly specify properties such as lengths, angles,
or congruence.

6.2 Future Work
There are exciting opportunities for continuing to improve VR
drawing tools.

Depth Accuracy. Depth perception may be a source of inaccuracy
in 3D sketching [3, 7, 48, 50]. Depth perception biases are known
to be individual [29] and related to the bas-relief ambiguity [8].
We conducted a preliminary experiment (� = 3) to assess the
importance of depth inaccuracy in our design drawing scenario.
In perspective, depth estimation errors would occur along a ray
from the eye to a point, not in the “look” direction perpendicular to
the image plane. For this reason, we did not detect systematic bias
along the look direction for an axis-aligned box-drawing task. In a
second experiment, participants drew lines between random points
on the surface of a sphere and its center. We analyzed the center
endpoints with principal component analysis. Two participants did
not exhibit a depth bias while a third did. This third participant
has anomalous stereo vision. We plan to explore an optional error

ScafoldSketch: Accurate Industrial Design Drawing in VR UIST ’21, October 10–14, 2021, Virtual Event, USA

0% 20% 40% 60% 80% 100%

with auto-correct
without auto-correct

with auto-correct
without auto-correct

with auto-correct
without auto-correct

with auto-correct
without auto-correct

with auto-correct
without auto-correct

strongly disagree disagree neutral agree strongly agree

Q1: It was easy to learn to use
the tools.

Q2: The software allowed me
to transfer my 2D drawing
skills into 3D.

Q3: I did not feel limited by the
tools.

Q4: I could draw accurately.

Q5: The scaffolds helped me
draw more accurately.

Q6: I enjoyed drawing using
the provided tools.

Q7: I want to use this software
in the future.

Q8: I prefer the software over
other software for 3D design
drawing.

with auto-correct
without auto-correct

with auto-correct
without auto-correct

with auto-correct
without auto-correct

p=1.0000

p=1.0000

p=1.0000

p=0.1883

p=0.0464

p=1.0000

p=0.4474

p=0.5227

Figure 11: Visualization of the paired question responses. The questions are provided on the left. For each question there are
two stacked bars, for the without and with auto-correct conditions. Each bar has fve responses from a fve point Likert scale.
The uncorrected �-value comparing each question pair is on the right.

0% 20% 40% 60% 80% 100%

Q11: Auto-correct interpreted my intended shape strokes correctly.
Q10: Auto-correct interpreted my intended scaffold strokes correctly.
Q9: Auto-correct helped me draw more accurately.

strongly disagree disagree neutral agree strongly agree

Q12: The drawings I made with auto-correct more accurately reflect
my intent than the drawings I made without auto-correct.

p=0.4433
p=0.1669

p=0.0490
p=0.0088

Figure 12: Visualization of the unpaired question responses. The questions are provided on the left. Each question was only
asked of the with auto-correct condition. Each bar has fve responses from a fve-point Likert scale. The uncorrected �-value
comparing each question to a uniform neutral distribution is on the right.

estimation task for users to personalize the parameters of our auto-
correct algorithm based on their psychophysical characteristics,
and to incorporate view-dependence into our constraint selection
and optimization steps.

Holistic Sketching. Our participants commented that they wished
to include both auto-corrected strokes and free-form strokes in
their compositions, to support more drawing styles. When show-
ing ScafoldSketch to potential users, one of the most common
requests is that it also includes some form of surfacing, which
has been explored in previous work [36, 42, 53]. Surfaces can also
support fnishing details such as shading or decals, which may be
supported by free-form strokes, surface-based edits, and repeated
over-sketching [5, 10, 28]. In particular, supporting shading and
detail strokes from industrial design practice would allow the cre-
ation of product design “renders” in 3D. The combination of all
these techniques into a single VR drawing system could be greater
than the sum of its parts and move VR drawing beyond single-use
tools and into the broader arena of general purpose 3D ideation and
creation experiences with applications across computer graphics
including fne art, concept art and storyboarding, 3D modeling,
CAD, architecture, fabrication, and more.

7 CONCLUSION
ScafoldSketch is a natural approach for industrial designers to
transfer their 2D design drawing skills into 3D. The nature of design
drawing allows ScafoldSketch to auto-correct scafold and shape
strokes separately with algorithms targeting the unique properties
of each, resulting in aesthetic and accurate 3D drawings. Industrial
designers easily learned to use ScafoldSketch. There is a tradeof
between freedom and power for any interface which interprets
and improves user input. It is inherently inhibiting for users to
worry about a computer mis-interpreting their input. Our user
study participants fnd that ScafoldSketch makes a worthwhile
tradeof.

ACKNOWLEDGMENTS
We are grateful to our reviewers and user testers who invested
substantial time pondering and using ScafoldSketch. We are par-
ticularly grateful to Don Park for remote technical support during
our user study. Authors Yu and Gingold were supported in part by
the United States National Science Foundation (IIS-1453018) and a
gift from Adobe Systems Inc.

UIST ’21, October 10–14, 2021, Virtual Event, USA Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold

REFERENCES
[1] Alexis Andre and Suguru Saito. 2011. Single-view sketch based modeling. In

Proceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces and
Modeling (SBIM ’11). Association for Computing Machinery, Vancouver, British
Columbia, Canada, 133–140. https://doi.org/10.1145/2021164.2021189

[2] Rahul Arora, Rubaiat Habib Kazi, Tovi Grossman, George Fitzmaurice, and Karan
Singh. 2018. SymbiosisSketch: Combining 2D & 3D Sketching for Designing
Detailed 3D Objects in Situ. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems (CHI ’18). ACM, New York, NY, USA, 185:1–185:15.
https://doi.org/10.1145/3173574.3173759 event-place: Montreal QC, Canada.

[3] Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman, Karan Singh,
and George W Fitzmaurice. 2017. Experimental Evaluation of Sketching on
Surfaces in VR.. In CHI, Vol. 17. 5643–5654.

[4] Rahul Arora and Karan Singh. 2019. Private Communication.
[5] Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: as-

natural-as-possible sketching system for creating 3d curve models. In Proceedings
of the 21st annual ACM symposium on User interface software and technology - UIST
’08. ACM Press, Monterey, CA, USA, 151. https://doi.org/10.1145/1449715.1449740

[6] Ravin Balakrishnan, George Fitzmaurice, Gordon Kurtenbach, and William Bux-
ton. 1999. Digital Tape Drawing. In Proceedings of the 12th Annual ACM Sympo-
sium on User Interface Software and Technology (UIST ’99). ACM, New York, NY,
USA, 161–169. https://doi.org/10.1145/320719.322598 event-place: Asheville,
North Carolina, USA.

[7] Mayra Donaji Barrera Machuca, Wolfgang Stuerzlinger, and Paul Asente. 2019.
The Efect of Spatial Ability on Immersive 3D Drawing. In Proceedings of the
2019 on Creativity and Cognition. ACM, San Diego CA USA, 173–186. https:
//doi.org/10.1145/3325480.3325489

[8] Peter N. Belhumeur, David J. Kriegman, and Alan L. Yuille. 1997. The Bas-Relief
Ambiguity. In Proceedings of IEEE CVPR. 1060–1066.

[9] David Ben-Haim, Gur Harary, and Ayellet Tal. 2010. Piecewise 3D Euler spirals.
In Proceedings of the 14th ACM Symposium on Solid and Physical Modeling (SPM
’10). Association for Computing Machinery, New York, NY, USA, 201–206. https:
//doi.org/10.1145/1839778.1839810

[10] Chris De Paoli and Karan Singh. 2015. SecondSkin: sketch-based construction
of layered 3D models. ACM Transactions on Graphics 34, 4 (July 2015), 1–10.
https://doi.org/10.1145/2766948

[11] Joachim Deisinger, Roland Blach, Gerold Wesche, Ralf Breining, and Andreas
Simon. 2000. Towards Immersive Modeling — Challenges and Recommendations:
A Workshop Analyzing the Needs of Designers. In Virtual Environments 2000,
W. Hansmann, W. Purgathofer, F. Sillion, Jurriaan Mulder, and Robert van Liere
(Eds.). Springer Vienna, Vienna, 145–156. https://doi.org/10.1007/978-3-7091-
6785-4_16

[12] Tobias Drey, Jan Gugenheimer, Julian Karlbauer, Maximilian Milo, and Enrico
Rukzio. 2020. VRSketchIn: Exploring the Design Space of Pen and Tablet Interaction
for 3D Sketching in Virtual Reality. Association for Computing Machinery, New
York, NY, USA, 1–14. https://doi.org/10.1145/3313831.3376628

[13] Lynn Eggli, Ching-Yao Hsu, Beat D. Bruderlin, and Gershon Elber. 1997. Inferring
3D models from freehand sketches and constraints. Computer-Aided Design 29, 2
(February 1997), 101–112. https://doi.org/10.1016/S0010-4485(96)00039-5

[14] Koos Eissen and Roselien Steur. 2012. Sketching: basics. Stiebner Verlag GmbH.
[15] J. Fišer, P. Asente, and D. Sýkora. 2015. ShipShape: A Drawing Beautifcation

Assistant. In Proceedings of the Workshop on Sketch-Based Interfaces and Modeling
(Istanbul, Turkey) (SBIM ’15). Eurographics Association, Goslar, DEU, 49–57.

[16] Yotam Gingold, Takeo Igarashi, and Denis Zorin. 2009. Structured annotations for
2D-to-3D modeling. In ACM SIGGRAPH Asia 2009 papers. ACM Press, Yokohama,
Japan, 1. https://doi.org/10.1145/1661412.1618494

[17] Tovi Grossman, Ravin Balakrishnan, Gordon Kurtenbach, George Fitzmaurice,
Azam Khan, and Bill Buxton. 2001. Interaction Techniques for 3D Modeling on
Large Displays. In Proceedings of the 2001 Symposium on Interactive 3D Graphics
(I3D ’01). ACM, New York, NY, USA, 17–23. https://doi.org/10.1145/364338.364341

[18] Tovi Grossman, Ravin Balakrishnan, Gordon Kurtenbach, George Fitzmaurice,
Azam Khan, and Bill Buxton. 2002. Creating Principal 3D Curves with Digital
Tape Drawing. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’02). ACM, New York, NY, USA, 121–128. https://doi.
org/10.1145/503376.503398 event-place: Minneapolis, Minnesota, USA.

[19] Yulia Gryaditskaya, Felix Hähnlein, Chenxi Liu, Alla Shefer, and Adrien Bousseau.
2020. Lifting freehand concept sketches into 3D. ACM Transactions on Graphics
39, 6 (Nov. 2020), 1–16. https://doi.org/10.1145/3414685.3417851

[20] Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Fredo
Durand, and Adrien Bousseau. 2019. OpenSketch: A richly-annotated dataset of
product design sketches. ACM Transactions on Graphics (TOG) 38, 6 (2019), 232.

[21] James W. Hennessey, Han Liu, Holger Winnemöller, Mira Dontcheva, and Niloy J.
Mitra. 2017. How2Sketch: generating easy-to-follow tutorials for sketching 3D
objects. In Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games (I3D ’17). ACM Press, San Francisco, California, 1–11.
https://doi.org/10.1145/3023368.3023371

[22] Takeo Igarashi, Sachiko Kawachiya, Hidehiko Tanaka, and Satoshi Matsuoka.
1998. Pegasus: a drawing system for rapid geometric design. In CHI 98 Conference
Summary on Human Factors in Computing Systems. ACM, Los Angeles California
USA, 24–25. https://doi.org/10.1145/286498.286511

[23] Takeo Igarashi, Satoshi Matsuoka, Sachiko Kawachiya, and Hidehiko Tanaka.
2006. Interactive beautifcation: a technique for rapid geometric design. In ACM
SIGGRAPH 2006 Courses (SIGGRAPH ’06). Association for Computing Machinery,
Boston, Massachusetts, 8–es. https://doi.org/10.1145/1185657.1185769

[24] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: a sketching
interface for 3D freeform design. In Proceedings of the 26th annual conference
on Computer graphics and interactive techniques (SIGGRAPH ’99). ACM Press,
409–416. https://doi.org/10.1145/311535.311602

[25] Daniel Keefe, Robert Zeleznik, and David Laidlaw. 2007. Drawing on Air: Input
Techniques for Controlled 3D Line Illustration. IEEE Transactions on Visualization
and Computer Graphics 13, 5 (Sept. 2007), 1067–1081. https://doi.org/10.1109/
TVCG.2007.1060

[26] Swarna Keshavabhotla, Blake Williford, Shalini Kumar, Ethan Hilton, Paul Taele,
Wayne Li, Julie Linsey, and Tracy Hammond. 2017. Conquering the cube:
learning to sketch primitives in perspective with an intelligent tutoring sys-
tem. In Proceedings of the Symposium on Sketch-Based Interfaces and Modeling
(SBIM ’17). Association for Computing Machinery, New York, NY, USA, 1–11.
https://doi.org/10.1145/3092907.3092911

[27] Yongkwan Kim, Sang-Gyun An, Joon Hyub Lee, and Seok-Hyung Bae. 2018.
Agile 3D Sketching with Air Scafolding. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI
’18). Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3173574.3173812

[28] Yongkwan Kim and Seok-Hyung Bae. 2016. SketchingWithHands: 3D Sketch-
ing Handheld Products with First-Person Hand Posture. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology (UIST ’16).
Association for Computing Machinery, New York, NY, USA, 797–808. https:
//doi.org/10.1145/2984511.2984567

[29] J J Koenderink, A J van Doorn, A M L Kappers, and J T Todd. 2001. Ambiguity
and the ‘mental eye’ in pictorial relief. Perception 30 (2001), 431–448. Issue 4.
http://www.perceptionweb.com/abstract.cgi?id=p3030

[30] Raph Levien. 2009. From Spiral to Spline: Optimal Techniques in Interactive Curve
Design. Ph.D. Dissertation. University of California, Berkeley.

[31] Mayra D Barrera Machuca, Paul Asente, Wolfgang Stuerzlinger, Jingwan Lu,
and Byungmoon Kim. 2018. Multiplanes: Assisted freehand VR sketching. In
Proceedings of the Symposium on Spatial User Interaction. 36–47.

[32] Mayra D Barrera Machuca, Wolfgang Stuerzlinger, and Paul Asente. 2019.
Smart3DGuides: Making Unconstrained Immersive 3D Drawing More Accurate.
12.

[33] James McCrae and Karan Singh. 2011. Neatening sketched strokes using piecewise
French curves. In Proceedings of the Eighth Eurographics Symposium on Sketch-
Based Interfaces and Modeling - SBIM ’11. ACM Press, Vancouver, British Columbia,
Canada, 141. https://doi.org/10.1145/2021164.2021190

[34] Henry P. Moreton and Carlo H. Séquin. 1992. Functional Optimization for Fair
Surface Design. SIGGRAPH Comput. Graph. 26, 2 (July 1992), 167–176. https:
//doi.org/10.1145/142920.134035 Place: New York, NY, USA Publisher: Association
for Computing Machinery.

[35] S. Murugappan, S. Sellamani, and Karthik Ramani. 2009. Towards beautifcation
of freehand sketches using suggestions. In Proceedings of the 6th Eurographics
Symposium on Sketch-Based Interfaces and Modeling - SBIM ’09. ACM Press, New
Orleans, Louisiana, 69. https://doi.org/10.1145/1572741.1572754

[36] Hao Pan, Yang Liu, Alla Shefer, Nicholas Vining, Chang-Jian Li, and Wenping
Wang. 2015. Flow aligned surfacing of curve networks. ACM Transactions on
Graphics 34, 4 (July 2015), 1–10. https://doi.org/10.1145/2766990

[37] Theo Pavlidis and Christopher J. Van Wyk. 1985. An Automatic Beautifer for
Drawings and Illustrations. In Proceedings of the 12th Annual Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH ’85). ACM, New York,
NY, USA, 225–234. https://doi.org/10.1145/325334.325240

[38] Jiantao Pu and Karthik Ramani. 2007. Priority-Based Geometric Constraint
Satisfaction. Journal of Computing and Information Science in Engineering 7 (Dec.
2007). https://doi.org/10.1115/1.2795301

[39] Sebastian Raschka. 2018. MLxtend: Providing machine learning and data science
utilities and extensions to Python’s scientifc computing stack. The Journal of
Open Source Software 3, 24 (April 2018). https://doi.org/10.21105/joss.00638

[40] Robert J. Renka. 2005. Shape-preserving interpolation by fair discrete G3 space
curves. Computer Aided Geometric Design 22, 8 (Nov. 2005), 793–809. https:
//doi.org/10.1016/j.cagd.2005.03.003

[41] Scott Robertson and Thomas Bertling. 2013. How to draw: drawing and sketching
objects and environments from your imagination (frst edition ed.). Design Studio
Press, Los Angeles, CA.

[42] S. Schaefer, J. Warren, and D. Zorin. 2004. Lofting curve networks using
subdivision surfaces. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing - SGP ’04. ACM Press, Nice, France, 103.
https://doi.org/10.1145/1057432.1057447 ISSN: 17278384.

https://doi.org/10.1145/2021164.2021189
https://doi.org/10.1145/3173574.3173759
https://doi.org/10.1145/1449715.1449740
https://doi.org/10.1145/320719.322598
https://doi.org/10.1145/3325480.3325489
https://doi.org/10.1145/3325480.3325489
https://doi.org/10.1145/1839778.1839810
https://doi.org/10.1145/1839778.1839810
https://doi.org/10.1145/2766948
https://doi.org/10.1007/978-3-7091-6785-4_16
https://doi.org/10.1007/978-3-7091-6785-4_16
https://doi.org/10.1145/3313831.3376628
https://doi.org/10.1016/S0010-4485(96)00039-5
https://doi.org/10.1145/1661412.1618494
https://doi.org/10.1145/364338.364341
https://doi.org/10.1145/503376.503398
https://doi.org/10.1145/503376.503398
https://doi.org/10.1145/3414685.3417851
https://doi.org/10.1145/3023368.3023371
https://doi.org/10.1145/286498.286511
https://doi.org/10.1145/1185657.1185769
https://doi.org/10.1145/311535.311602
https://doi.org/10.1109/TVCG.2007.1060
https://doi.org/10.1109/TVCG.2007.1060
https://doi.org/10.1145/3092907.3092911
https://doi.org/10.1145/3173574.3173812
https://doi.org/10.1145/3173574.3173812
https://doi.org/10.1145/2984511.2984567
https://doi.org/10.1145/2984511.2984567
http://www.perceptionweb.com/abstract.cgi?id=p3030
https://doi.org/10.1145/2021164.2021190
https://doi.org/10.1145/142920.134035
https://doi.org/10.1145/142920.134035
https://doi.org/10.1145/1572741.1572754
https://doi.org/10.1145/2766990
https://doi.org/10.1145/325334.325240
https://doi.org/10.1115/1.2795301
https://doi.org/10.21105/joss.00638
https://doi.org/10.1016/j.cagd.2005.03.003
https://doi.org/10.1016/j.cagd.2005.03.003
https://doi.org/10.1145/1057432.1057447

ScafoldSketch: Accurate Industrial Design Drawing in VR

[43] Steven Schkolne, Michael Pruett, and Peter Schröder. 2001. Surface drawing:
creating organic 3D shapes with the hand and tangible tools. In Proceedings of the
SIGCHI conference on Human factors in computing systems (CHI ’01). ACM Press,
Seattle, Washington, United States, 261–268. https://doi.org/10.1145/365024.
365114

[44] Ryan Schmidt, Azam Khan, Karan Singh, and Gord Kurtenbach. 2009. Analytic
drawing of 3D scafolds. In ACM SIGGRAPH Asia 2009 papers. 1–10.

[45] Skipper Seabold and Josef Perktold. 2010. statsmodels: Econometric and statistical
modeling with python. In 9th Python in Science Conference.

[46] Nicholas Sharp et al. 2019. Polyscope. www.polyscope.run.
[47] Karan Singh. 1999. Interactive curve design using digital French curves. In

Proceedings of the 1999 symposium on Interactive 3D graphics (I3D ’99). ACM Press,
Atlanta, Georgia, United States, 23–30. https://doi.org/10.1145/300523.300525

[48] Julian J. Tramper and C. C. a. M. Gielen. 2011. Visuomotor Coordination Is Difer-
ent for Diferent Directions in Three-Dimensional Space. Journal of Neuroscience
31, 21 (May 2011), 7857–7866. https://doi.org/10.1523/JNEUROSCI.0486-11.2011
Publisher: Society for Neuroscience Section: Articles.

[49] Steve Tsang, Ravin Balakrishnan, Karan Singh, and Abhishek Ranjan. 2004. A
suggestive interface for image guided 3D sketching. In Proceedings of ACM SIGCHI

UIST ’21, October 10–14, 2021, Virtual Event, USA

(Vienna, Austria). 591–598. https://doi.org/10.1145/985692.985767
[50] E. Wiese, J. H. Israel, A. Meyer, and S. Bongartz. 2010. Investigating the Learnabil-

ity of Immersive Free-hand Sketching. In Proceedings of the Seventh Sketch-Based
Interfaces and Modeling Symposium (SBIM ’10). Eurographics Association, Aire-
la-Ville, Switzerland, Switzerland, 135–142. http://dl.acm.org/citation.cfm?id=
1923363.1923387 event-place: Annecy, France.

[51] Wikipedia contributors. 2020. Menger curvature — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Menger_curvature&oldid=
951033306 [Online; accessed 28-January-2021].

[52] Baoxuan Xu, William Chang, Alla Shefer, Adrien Bousseau, James McCrae,
and Karan Singh. 2014. True2Form: 3D curve networks from 2D sketches via
selective regularization. ACM Transactions on Graphics 33, 4 (July 2014), 1–13.
https://doi.org/10.1145/2601097.2601128

[53] Emilie Yu, Rahul Arora, Tibor Stanko, J. Andreas Bærentzen, Karan Singh, and
Adrien Bousseau. 2021. CASSIE: Curve and Surface Sketching in Immersive
Environments. In ACM Conference on Human Factors in Computing Systems (CHI).
http://www-sop.inria.fr/reves/Basilic/2021/YASBS21

https://doi.org/10.1145/365024.365114
https://doi.org/10.1145/365024.365114
https://doi.org/10.1145/300523.300525
https://doi.org/10.1523/JNEUROSCI.0486-11.2011
https://doi.org/10.1145/985692.985767
http://dl.acm.org/citation.cfm?id=1923363.1923387
http://dl.acm.org/citation.cfm?id=1923363.1923387
https://en.wikipedia.org/w/index.php?title=Menger_curvature&oldid=951033306
https://en.wikipedia.org/w/index.php?title=Menger_curvature&oldid=951033306
https://doi.org/10.1145/2601097.2601128
http://www-sop.inria.fr/reves/Basilic/2021/YASBS21
www.polyscope.run

	Abstract
	1 Introduction
	2 Related Work
	3 Interface
	3.1 Industrial Design Practice
	3.2 The ScaffoldSketch Interface

	4 Algorithm
	4.1 Auto-Correcting Scaffolds
	4.2 Auto-Correcting Shape Strokes

	5 Evaluation
	5.1 Methodology
	5.2 Results

	6 Discussion
	6.1 Reflections
	6.2 Future Work

	7 Conclusion
	Acknowledgments
	References

